All files / src/services/ChangeAddress DynamicChangeAddressResolver.ts

92.9% Statements 144/155
70% Branches 14/20
90.47% Functions 38/42
93.47% Lines 129/138

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 37642x 42x       42x   42x 42x 42x 42x                                                 42x 5x   5x 18x     5x                 42x 5x 3x 1x 1x               42x 5x 11x                   42x 14x   3x     3x   3x   1x 1x               42x 14x   3x     3x                         42x 39x                     42x           5x 5x 5x       14x 5x 5x 5x 5x   14x 14x   5x 14x     14x 14x   14x     14x   14x   14x     14x               5x                 42x   90x   79x 79x   79x               42x 18x 45x 45x   45x 18x 27x 13x   14x                                                     42x 5x 5x 13x   13x     13x     5x 18x 18x 18x 18x     5x 14x 18x 18x       5x                   42x       16x 16x   6x             42x 136x 136x 136x 136x                               136x 136x 136x 136x         92x 92x 92x   92x   92x     91x 1x 3x 3x     1x       90x 85x 1x       84x 100x     84x 1x   83x 85x 85x     83x         5x 2x 2x   5x         2x     5x 5x   5x   5x 14x     5x      
import { BigNumber } from 'bignumber.js';
import { Cardano } from '@cardano-sdk/core';
import { ChangeAddressResolver, Selection } from '@cardano-sdk/input-selection';
import { DelegatedStake, DelegationTracker } from '../types';
import { GroupedAddress } from '@cardano-sdk/key-management';
import { InvalidStateError } from '@cardano-sdk/util';
import { Logger } from 'ts-log';
import { Observable, firstValueFrom } from 'rxjs';
import { sortAddresses } from '../util/sortAddresses';
import isEqual from 'lodash/isEqual.js';
import uniq from 'lodash/uniq.js';
 
/**
 * We are using buckets as an analogy to stake keys which are delegated to specific
 * pools with a specific amount of the total balance, and a target amount of balance.
 *
 * Buckets are considered filled if their current balance + allocated change is => than
 * their capacity and unfilled if their current balance + allocated change is < than their capacity.
 *
 * The bucket capacity is defined as a % (as specified in the delegation portfolio) of the total staked balance,
 * I.E if the total balance is 100 lovelace, and the portfolio % is 0.1, then capacity is set as 10 lovelace.
 */
type Bucket = {
  address: Cardano.PaymentAddress;
  change: Array<Cardano.TxOut>;
  capacity: bigint;
  filledAmount: bigint;
};
 
/**
 * Gets the coalesced coin amount from the given TxOut array.
 *
 * @param txOuts The TxOuts to coalesce.
 * @returns The coin value coalesced.
 */
const getBalanceInTxOuts = (txOuts: Array<Cardano.TxOut>) => {
  let balanceInBuckets = 0n;
 
  for (const txOut of txOuts) {
    balanceInBuckets += txOut.value.coins;
  }
 
  return balanceInBuckets;
};
 
/**
 * Aggregates all the coin balance in the input set from any input in the selection that belongs to us.
 *
 * @param knownAddresses The wallet know addresses.
 * @param inputs The inputs.
 */
const getSpentInInputs = (knownAddresses: Array<GroupedAddress>, inputs: Array<Cardano.Utxo>) =>
  inputs
    .filter((utxo) => knownAddresses.some((groupedAddress) => groupedAddress.address === utxo[0].address))
    .map((utxo) => utxo[1].value.coins)
    .reduce((a, b) => a + b, 0n);
 
/**
 * Aggregates all the coin balance in the output set from any output in the selection that belongs to us.
 *
 * @param knownAddresses The wallet know addresses.
 * @param outputs The outputs.
 */
const getBalanceFromOutputs = (knownAddresses: Array<GroupedAddress>, outputs: Array<Cardano.TxOut>) =>
  outputs
    .filter((out) => knownAddresses.some((groupedAddress) => groupedAddress.address === out.address))
    .map((out) => out.value.coins)
    .reduce((a, b) => a + b, 0n);
 
/**
 * Gets the spent amount by this selection from a given reward account.
 *
 * @param rewardAccount The reward account that we want to query.
 * @param inputs The inputs in the selection.
 */
const getSpentFromRewardAccount = (rewardAccount: Cardano.RewardAccount, inputs: Array<Cardano.Utxo>) =>
  inputs
    .filter((utxo) => {
      const address = Cardano.Address.fromString(utxo[0].address)?.asBase();
 
      // Address may not have stake credential.
      Iif (!address) return false;
 
      return Cardano.RewardAccount.toHash(rewardAccount) === address.getStakeCredential().hash;
    })
    .map((utxo) => utxo[1].value.coins)
    .reduce((a, b) => a + b, 0n);
 
/**
 * Gets the deposited amount by this selection to a given reward account.
 *
 * @param rewardAccount The reward account that we want to query.
 * @param outputs The outputs in the selection.
 */
const getDepositToRewardAccount = (rewardAccount: Cardano.RewardAccount, outputs: Array<Cardano.TxOut>) =>
  outputs
    .filter((txOut) => {
      const address = Cardano.Address.fromString(txOut.address)?.asBase();
 
      // Address may not have stake credential.
      if (!address) return false;
 
      return Cardano.RewardAccount.toHash(rewardAccount) === address.getStakeCredential().hash;
    })
    .map((txOut) => txOut.value.coins)
    .reduce((a, b) => a + b, 0n);
 
/**
 * Gets a payment address from our known addresses that match the given reward account.
 *
 * @param knownAddresses The wallet know addresses.
 * @param account The reward account we are looking for.
 */
const getAddressForRewardAccount = (knownAddresses: Array<GroupedAddress>, account: Cardano.RewardAccount) =>
  knownAddresses.find((groupedAddress) => groupedAddress.rewardAccount === account);
 
/**
 * Creates a list of buckets (one for each entry in the delegation portfolio). It will also compute the updated delegated amounts
 * and percentages after applying the changes of the selection to the wallet state.
 *
 * @param selection The current selection of inputs to satisfy the outputs in the transaction.
 * @param delegateAmounts The delegated stake amounts to each pool.
 * @param portfolio The current delegation portfolio.
 * @param knownAddresses The list of known addresses.
 */
const createBuckets = (
  selection: Selection,
  delegateAmounts: Array<DelegatedStake>,
  portfolio: Cardano.Cip17DelegationPortfolio,
  knownAddresses: Array<GroupedAddress>
): Array<Bucket> => {
  const buckets = new Array<Bucket>();
  const inputs = [...selection.inputs];
  const outputs = [...selection.outputs];
 
  // We need to 'apply' the transaction, by deducting the balance used in inputs from our addresses and adding any balance
  // in the outputs that are going to our addresses before distributing the change.
  const totalStakeDelegatedBeforeTx = delegateAmounts.map((delegated) => delegated.stake).reduce((a, b) => a + b, 0n);
  const balanceInChange = getBalanceInTxOuts(selection.change);
  const negativeBalance = getSpentInInputs(knownAddresses, inputs) + selection.fee;
  const positiveBalance = getBalanceFromOutputs(knownAddresses, outputs) + balanceInChange;
  const totalStake = totalStakeDelegatedBeforeTx + positiveBalance - negativeBalance;
 
  const totalWeight = portfolio.pools.map((pool) => pool.weight).reduce((sum, current) => sum + current, 0);
  const weightsAsPercent = new Map(portfolio.pools.map((pool) => [pool.id, pool.weight / totalWeight]));
 
  for (const delegated of delegateAmounts) {
    Iif (delegated.rewardAccounts.length === 0)
      throw new InvalidStateError(`No reward accounts delegating to pool '${delegated.pool.id}'.`);
 
    const account = delegated.rewardAccounts[0];
    const groupedAddress = getAddressForRewardAccount(knownAddresses, account);
 
    Iif (!groupedAddress) throw new InvalidStateError(`Reward account '${account}' unknown.`);
 
    const adjustedStake =
      delegated.stake - getSpentFromRewardAccount(account, inputs) + getDepositToRewardAccount(account, outputs);
 
    const percentageForPool = weightsAsPercent.get(delegated.pool.hexId);
 
    Iif (percentageForPool === undefined)
      throw new InvalidStateError(`Pool '${delegated.pool.id}' not found in the portfolio.`); // Shouldn't happen.
 
    buckets.push({
      address: groupedAddress.address,
      capacity: BigInt(new BigNumber(totalStake.toString()).multipliedBy(percentageForPool).toFixed(0, 0)),
      change: new Array<Cardano.TxOut>(),
      filledAmount: adjustedStake
    });
  }
 
  return buckets;
};
 
/**
 * Computes the gap of the given bucket. The gap is defined as the difference between bucket capacity and the currently filled
 * quantity, normalized as a number between 0 and 1.
 *
 * @param bucket The bucket to compute the gap for.
 */
const getBucketGap = (bucket: Bucket) => {
  // We need to avoid a division by 0 here. If capacity is 0, we just return a gap of 0.
  if (bucket.capacity === 0n) return new BigNumber('0');
 
  const capacity = new BigNumber(bucket.capacity.toString());
  const filledAmount = new BigNumber(bucket.filledAmount.toString());
 
  return capacity.minus(filledAmount).dividedBy(capacity);
};
 
/**
 * Picks the next bucket to fill, the bucket with the biggest gap will be chosen.
 *
 * @param buckets The list of available buckets.
 */
const pickBucket = (buckets: Array<Bucket>) =>
  buckets.sort((a, b) => {
    const gapA = getBucketGap(a);
    const gapB = getBucketGap(b);
 
    if (gapB.isGreaterThan(gapA)) {
      return 1;
    } else if (gapB.isLessThan(gapA)) {
      return -1;
    }
    return 0;
  })[0];
 
/**
 * Distributing change is related to a class of problems called "multiway number partitioning", which is NP-hard. If the problem
 * size is small (such as is our case), more exact methods such as dynamic programming or integer programming could be used,
 * but since this is still a POC, for simplicity’s sake, we are implementing a simplified and iterative approach to
 * solve this:
 *
 * 1 - Sort the change list in descending order. The reason to sort is to allocate the largest change outputs first to
 * the 'buckets' with the largest gap, and the smaller outputs to the buckets with smaller gaps, reducing wasted change (over flow).
 * 2 - For each change output, add it to the bucket that currently has the largest gap and is not overflowed.
 * 3 - Repeat until all change outputs are in a bucket.
 *
 * This will yield a reasonable approximation to the optimal distribution of change, giving priority to buckets with larger
 * gaps, but at the same time making sure we are not 'wasting' change by overflowing a single bucket too much.
 *
 * TODO: Explore more exact algorithms for change distribution. The approach we have followed here is a greedy heuristic, which can
 * provide reasonable solutions quickly but is not guaranteed to find the optimal solution. It might be feasible to use a more
 * rigorous approach such as integer programming, simulated annealing, or a complete search, which could examine all possible
 * assignments of change outputs to buckets and select the one that most closely matches the desired proportions. However,
 * these methods can be computationally intensive and may not be practical, and probably overkill for our use case (To be determined).
 *
 * @param changeOutputs The list of change outputs to be distributed.
 * @param prefilledBuckets The list of buckets, we should have one bucket per entry in the delegation distribution portfolio.
 * @returns A list of buckets with the given change outputs distributed in a way that closely matches the expected distribution (best effort).
 */
const distributeChange = (changeOutputs: Array<Cardano.TxOut>, prefilledBuckets: Array<Bucket>): Array<Bucket> => {
  const buckets = [...prefilledBuckets];
  const sortedOutputs = changeOutputs.sort((a, b) => {
    Iif (a.value.coins > b.value.coins) {
      return 1;
    } else Iif (a.value.coins < b.value.coins) {
      return -1;
    }
    return 0;
  });
 
  while (sortedOutputs.length > 0) {
    const bucket = pickBucket(buckets);
    const selected = sortedOutputs.splice(0, 1)[0];
    bucket.change.push(selected);
    bucket.filledAmount += selected.value.coins;
  }
 
  for (const bucket of buckets) {
    bucket.change = bucket.change.map((txOut) => {
      txOut.address = bucket.address;
      return txOut;
    });
  }
 
  return buckets;
};
 
/**
 * Gets whether the portfolio pools matches the current stake distribution pools.
 *
 * @param portfolio The staking portfolio.
 * @param distribution the distribution.
 * @returns true if both matches, otherwise; false.
 */
export const delegationMatchesPortfolio = (
  portfolio: Cardano.Cip17DelegationPortfolio,
  distribution: DelegatedStake[]
): boolean => {
  const portfolioPools = uniq(portfolio.pools.map((cip17Pool) => cip17Pool.id)).sort();
  const delegationPools = uniq(distribution.map((delegatedStake) => delegatedStake.pool.hexId)).sort();
 
  return isEqual(portfolioPools, delegationPools);
};
 
/** Gets the current delegation portfolio. */
export type GetDelegationPortfolio = () => Promise<Cardano.Cip17DelegationPortfolio | null>;
 
/** Resolves the address to be used for change. */
export class DynamicChangeAddressResolver implements ChangeAddressResolver {
  readonly #getDelegationPortfolio: GetDelegationPortfolio;
  readonly #delegationDistribution: DelegationTracker['distribution$'];
  readonly #addresses$: Observable<GroupedAddress[]>;
  readonly #logger: Logger;
 
  /**
   * Initializes a new instance of the StakeDistributionChangeAddressResolver.
   *
   * @param addresses$ The wallet known addresses.
   * @param delegationDistribution The wallet delegation distribution observable.
   * @param getDelegationPortfolio The current delegation portfolio.
   * @param logger The logger instance.
   */
  constructor(
    addresses$: Observable<GroupedAddress[]>,
    delegationDistribution: DelegationTracker['distribution$'],
    getDelegationPortfolio: GetDelegationPortfolio,
    logger: Logger
  ) {
    this.#getDelegationPortfolio = getDelegationPortfolio;
    this.#delegationDistribution = delegationDistribution;
    this.#addresses$ = addresses$;
    this.#logger = logger;
  }
 
  /** Resolve the change addresses for change outputs that better maintains the desired stake distribution. */
  async resolve(selection: Selection): Promise<Array<Cardano.TxOut>> {
    const delegationDistribution = [...(await firstValueFrom(this.#delegationDistribution)).values()];
    let portfolio = await this.#getDelegationPortfolio();
    const addresses = sortAddresses(await firstValueFrom(this.#addresses$));
 
    let updatedChange = [...selection.change];
 
    if (addresses.length === 0) throw new InvalidStateError('The wallet has no known addresses.');
 
    // If the wallet is not delegating to any pool, fall back to giving all change to the first derived address.
    if (delegationDistribution.length === 0) {
      updatedChange = updatedChange.map((txOut) => {
        txOut.address = addresses[0].address;
        return txOut;
      });
 
      return updatedChange;
    }
 
    // If only one delegation is found, assign all change to that reward account.
    if (delegationDistribution.length === 1) {
      if (delegationDistribution[0].rewardAccounts.length === 0)
        throw new InvalidStateError(`No reward accounts delegating to pool '${delegationDistribution[0].pool.id}'.`);
 
      // Several reward accounts could be delegated to the same pool, in this case it doesn't
      // matter which one we chose to place the stake at.
      const groupedAddress = addresses.find(
        (address) => address.rewardAccount === delegationDistribution[0].rewardAccounts[0]
      );
 
      if (!groupedAddress)
        throw new InvalidStateError(`Reward account '${delegationDistribution[0].rewardAccounts[0]}' unknown.`);
 
      updatedChange = updatedChange.map((txOut) => {
        txOut.address = groupedAddress.address;
        return txOut;
      });
 
      return updatedChange;
    }
 
    // If the portfolio doesn't match the current delegation (same pools), this strategy won't work, we can't guess
    // where to put the balance, we will fall back to even distribution and log a warning.
    if (!portfolio || !delegationMatchesPortfolio(portfolio, delegationDistribution)) {
      this.#logger.warn('The portfolio doesnt match current wallet delegation.');
      this.#logger.warn(`Portfolio: ${portfolio}`);
 
      const pools = delegationDistribution.map((stake) => ({
        id: stake.pool.hexId,
        weight: 1 / delegationDistribution.length
      }));
 
      portfolio = { name: 'Default Portfolio', pools };
    }
 
    const buckets = createBuckets(selection, delegationDistribution, portfolio, addresses);
    const updatedBuckets = distributeChange(selection.change, buckets);
 
    updatedChange = new Array<Cardano.TxOut>();
 
    for (const bucket of updatedBuckets) {
      updatedChange = [...updatedChange, ...bucket.change];
    }
 
    return updatedChange;
  }
}