
BENCHMARKING GitHub

Benchmarking on monad evaluation

The bracket around an IO action will enter a named context,
evaluate the action, and return its result. A bracket, in a
named context, can be placed around a STM action:
bracketObserveIO

:: Configuration
-> Trace IO a
-> Severity
-> Text
-> IO t
-> IO t

The set of observed counters are traced as ObserveOpen,
ObserveClose and ObserveDiff with the indicated severity
to the Trace. An exception thrown in the action will be traced
and rethrown.
Other bracketing functions exist: bracketObserveM and bracketObserveX.

Benchmarking STM transaction

A bracket, in a named context, can be placed around an STM
action:
bracketObserveIO

:: Configuration
-> Trace IO a
-> Severity
-> Text
-> STM t
-> IO t

This will return the result from successfully evaluating the
STM action, which does not have access to logging.
A second bracket function also traces the log items (pairs of
meta data and content) which are output by the STM action
and returns its result.
bracketObserveLogIO

:: Configuration
-> Trace IO a
-> Severity
-> Text
-> STM (t,[(LOMeta , LOContent a)])
-> IO t

Aggregation

Observables can be forwarded for aggregation, which currently
can aggregate them into a basic statistics or an exponentially
weighted moving average (EWMA).
Aggregated values reenter the switchboard with ’#aggrega-
tion’ prepended to their name, and can be routed like ordinary
messages.
Values may be of type:
data Measurable

= Microseconds
| Nanoseconds
| Seconds
| Bytes
| Severity
| PureI Integer
| PureD Double

The statistics computes: minimum, maximum, mean, std.
dev., and count of (1) the observed values, (2) their differ-
ences to the previous, and (3) the time between messages.

Observables — OS counters

Platform independent:
MonotonicClock clock with �s precision
GhcRtsStats Haskell RTS values (gc, mem)
Linux specific:
MemoryStats reports memory usage
ProcessStats lots of process info: cpu, mem, io, ...
IOStats block device I/O
NetStats network I/O
The Linux specific counters for the current process are ob-
tained from the /proc interface into the kernel.
To trace observables, the configuration needs to find a def-
inition of a subtrace ObservableTrace for the context name.
Only the mentioned counters in the list will be recorded.
CM.setSubTrace

config
"proc.observed"
(Just $ ObservableTrace observablesSet

)
where

observablesSet = [MonotonicClock
, MemoryStats
]

https://github.com/input-output-hk/iohk-monitoring-framework
https://github.com/input-output-hk/iohk-monitoring-framework/blob/master/iohk-monitoring/src/Cardano/BM/Observer/Monadic.lhs
https://github.com/input-output-hk/iohk-monitoring-framework/blob/master/iohk-monitoring/src/Cardano/BM/Observer/STM.lhs
https://github.com/input-output-hk/iohk-monitoring-framework/blob/master/iohk-monitoring/src/Cardano/BM/Data/Aggregated.lhs
https://github.com/input-output-hk/iohk-monitoring-framework/blob/master/iohk-monitoring/src/Cardano/BM/Data/Counter.lhs

