Source code on Github
{-# OPTIONS --type-in-type --no-import-sorts #-}

module Axiom.Set.Predicates where

open import abstract-set-theory.Prelude

open import Axiom.Set

import Relation.Unary as P
import Function.Properties.Equivalence as E

Pred-Model : Theory
Pred-Model = λ where
  .Set            λ A  A  Type
  ._∈_            λ x X  X x
  .sp             ⊤-SpecProperty
  .specification {_} {P}  λ X _  P P.∩ X , E.refl
  .unions         λ X   a  ∃[ Z ] X Z × Z a) , E.refl
  .replacement    λ f X   b  ∃[ a ] b  f a × X a) , E.refl
  .listing        λ l  (_∈ˡ l) , E.refl
    where open Theory