Source code on Github{-# OPTIONS --type-in-type --no-import-sorts #-}
module Axiom.Set.Predicates where
open import abstract-set-theory.Prelude
open import Axiom.Set
import Relation.Unary as P
import Function.Properties.Equivalence as E
Pred-Model : Theory
Pred-Model = λ where
.Set → λ A → A → Type
._∈_ → λ x X → X x
.sp → ⊤-SpecProperty
.specification {_} {P} → λ X _ → P P.∩ X , E.refl
.unions → λ X → (λ a → ∃[ Z ] X Z × Z a) , E.refl
.replacement → λ f X → (λ b → ∃[ a ] b ≡ f a × X a) , E.refl
.listing → λ l → (_∈ˡ l) , E.refl
where open Theory