\begin{code}
module Type.BetaNBE.Stability where
\end{code}
\begin{code}
open import Type
open import Type.BetaNormal
open import Type.BetaNormal.Equality
open import Type.BetaNBE
open import Type.BetaNBE.Completeness
open import Relation.Binary.PropositionalEquality
open import Function
\end{code}
If you take a normal form, embed it back into syntax and then
normalize it again, you get the same result. This is an important
property for substitution on normal forms: we don't want to eta expand
variables otherwise substituting in by the identity substitution can
perturb the expression.
\begin{code}
stability : ∀{Φ K}(n : Φ ⊢Nf⋆ K) → nf (embNf n) ≡ n
stabilityNe : ∀{Φ K}(n : Φ ⊢Ne⋆ K) → CR K (eval (embNe n) (idEnv _)) (reflect n)
stability (Π B) =
cong Π (trans (idext (λ { Z → reflectCR refl
; (S α) → renVal-reflect S (` α)})
(embNf B))
(stability B))
stability (A ⇒ B) = cong₂ _⇒_ (stability A) (stability B)
stability (ƛ B) =
cong ƛ (trans (reifyCR (idext (λ { Z → reflectCR refl
; (S α) → renVal-reflect S (` α)})
(embNf B)))
(stability B))
stability (con tcn) = refl
stability (μ A B) = cong₂ μ (stability A) (stability B)
stability {K = *} (ne n) = stabilityNe n
stability {K = K ⇒ J} (ne n) = reifyCR (stabilityNe n)
stabilityNe (` α) = reflectCR refl
stabilityNe (n · n') = transCR
(AppCR (stabilityNe n) (idext idCR (embNf n')))
(reflectCR (cong₂ _·_ refl (stability n')))
\end{code}